extension | φ:Q→Out N | d | ρ | Label | ID |
C23⋊2D4⋊1C2 = C23⋊D8 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 16 | | C2^3:2D4:1C2 | 128,327 |
C23⋊2D4⋊2C2 = C24.9D4 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 16 | | C2^3:2D4:2C2 | 128,332 |
C23⋊2D4⋊3C2 = C24⋊7D4 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 32 | | C2^3:2D4:3C2 | 128,1135 |
C23⋊2D4⋊4C2 = C23.304C24 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 32 | | C2^3:2D4:4C2 | 128,1136 |
C23⋊2D4⋊5C2 = C24.244C23 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 64 | | C2^3:2D4:5C2 | 128,1139 |
C23⋊2D4⋊6C2 = C23.308C24 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 32 | | C2^3:2D4:6C2 | 128,1140 |
C23⋊2D4⋊7C2 = C24⋊8D4 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 32 | | C2^3:2D4:7C2 | 128,1142 |
C23⋊2D4⋊8C2 = C24.249C23 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 64 | | C2^3:2D4:8C2 | 128,1146 |
C23⋊2D4⋊9C2 = C23.324C24 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 32 | | C2^3:2D4:9C2 | 128,1156 |
C23⋊2D4⋊10C2 = C23.328C24 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 64 | | C2^3:2D4:10C2 | 128,1160 |
C23⋊2D4⋊11C2 = C24.262C23 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 64 | | C2^3:2D4:11C2 | 128,1162 |
C23⋊2D4⋊12C2 = C24.263C23 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 64 | | C2^3:2D4:12C2 | 128,1163 |
C23⋊2D4⋊13C2 = C23.333C24 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 32 | | C2^3:2D4:13C2 | 128,1165 |
C23⋊2D4⋊14C2 = C23.356C24 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 64 | | C2^3:2D4:14C2 | 128,1188 |
C23⋊2D4⋊15C2 = C23.364C24 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 64 | | C2^3:2D4:15C2 | 128,1196 |
C23⋊2D4⋊16C2 = C42⋊17D4 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 64 | | C2^3:2D4:16C2 | 128,1267 |
C23⋊2D4⋊17C2 = C23.439C24 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 32 | | C2^3:2D4:17C2 | 128,1271 |
C23⋊2D4⋊18C2 = C42⋊19D4 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 64 | | C2^3:2D4:18C2 | 128,1272 |
C23⋊2D4⋊19C2 = C42⋊20D4 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 64 | | C2^3:2D4:19C2 | 128,1273 |
C23⋊2D4⋊20C2 = C23.443C24 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 64 | | C2^3:2D4:20C2 | 128,1275 |
C23⋊2D4⋊21C2 = C23.455C24 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 64 | | C2^3:2D4:21C2 | 128,1287 |
C23⋊2D4⋊22C2 = C24⋊9D4 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 32 | | C2^3:2D4:22C2 | 128,1345 |
C23⋊2D4⋊23C2 = C24.360C23 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 64 | | C2^3:2D4:23C2 | 128,1347 |
C23⋊2D4⋊24C2 = C24⋊10D4 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 32 | | C2^3:2D4:24C2 | 128,1349 |
C23⋊2D4⋊25C2 = C42⋊27D4 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 64 | | C2^3:2D4:25C2 | 128,1351 |
C23⋊2D4⋊26C2 = C42⋊29D4 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 64 | | C2^3:2D4:26C2 | 128,1363 |
C23⋊2D4⋊27C2 = C23.535C24 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 64 | | C2^3:2D4:27C2 | 128,1367 |
C23⋊2D4⋊28C2 = C23.556C24 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 64 | | C2^3:2D4:28C2 | 128,1388 |
C23⋊2D4⋊29C2 = C42⋊31D4 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 64 | | C2^3:2D4:29C2 | 128,1389 |
C23⋊2D4⋊30C2 = C24.377C23 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 64 | | C2^3:2D4:30C2 | 128,1393 |
C23⋊2D4⋊31C2 = C23.568C24 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 32 | | C2^3:2D4:31C2 | 128,1400 |
C23⋊2D4⋊32C2 = C23.569C24 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 32 | | C2^3:2D4:32C2 | 128,1401 |
C23⋊2D4⋊33C2 = C23.570C24 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 32 | | C2^3:2D4:33C2 | 128,1402 |
C23⋊2D4⋊34C2 = C23.571C24 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 64 | | C2^3:2D4:34C2 | 128,1403 |
C23⋊2D4⋊35C2 = C23.573C24 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 64 | | C2^3:2D4:35C2 | 128,1405 |
C23⋊2D4⋊36C2 = C24.384C23 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 64 | | C2^3:2D4:36C2 | 128,1407 |
C23⋊2D4⋊37C2 = C23.576C24 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 64 | | C2^3:2D4:37C2 | 128,1408 |
C23⋊2D4⋊38C2 = C23.578C24 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 32 | | C2^3:2D4:38C2 | 128,1410 |
C23⋊2D4⋊39C2 = C24.389C23 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 64 | | C2^3:2D4:39C2 | 128,1414 |
C23⋊2D4⋊40C2 = C24.395C23 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 64 | | C2^3:2D4:40C2 | 128,1420 |
C23⋊2D4⋊41C2 = C24.406C23 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 64 | | C2^3:2D4:41C2 | 128,1431 |
C23⋊2D4⋊42C2 = C23.603C24 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 64 | | C2^3:2D4:42C2 | 128,1435 |
C23⋊2D4⋊43C2 = C24.413C23 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 64 | | C2^3:2D4:43C2 | 128,1446 |
C23⋊2D4⋊44C2 = C23.633C24 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 64 | | C2^3:2D4:44C2 | 128,1465 |
C23⋊2D4⋊45C2 = C24⋊11D4 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 32 | | C2^3:2D4:45C2 | 128,1544 |
C23⋊2D4⋊46C2 = C24.459C23 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 64 | | C2^3:2D4:46C2 | 128,1545 |
C23⋊2D4⋊47C2 = C23.715C24 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 64 | | C2^3:2D4:47C2 | 128,1547 |
C23⋊2D4⋊48C2 = C42⋊33D4 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 64 | | C2^3:2D4:48C2 | 128,1550 |
C23⋊2D4⋊49C2 = C42⋊34D4 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 64 | | C2^3:2D4:49C2 | 128,1551 |
C23⋊2D4⋊50C2 = C23.725C24 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 64 | | C2^3:2D4:50C2 | 128,1557 |
C23⋊2D4⋊51C2 = C23.728C24 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 64 | | C2^3:2D4:51C2 | 128,1560 |
C23⋊2D4⋊52C2 = C23.288C24 | φ: trivial image | 64 | | C2^3:2D4:52C2 | 128,1120 |
C23⋊2D4⋊53C2 = C42⋊16D4 | φ: trivial image | 64 | | C2^3:2D4:53C2 | 128,1129 |
extension | φ:Q→Out N | d | ρ | Label | ID |
C23⋊2D4.1C2 = C24.D4 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 16 | | C2^3:2D4.1C2 | 128,75 |
C23⋊2D4.2C2 = C23⋊SD16 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 16 | | C2^3:2D4.2C2 | 128,328 |
C23⋊2D4.3C2 = C24.276C23 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 64 | | C2^3:2D4.3C2 | 128,1187 |
C23⋊2D4.4C2 = C24.278C23 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 64 | | C2^3:2D4.4C2 | 128,1189 |
C23⋊2D4.5C2 = C23.359C24 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 64 | | C2^3:2D4.5C2 | 128,1191 |
C23⋊2D4.6C2 = C24.282C23 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 64 | | C2^3:2D4.6C2 | 128,1193 |
C23⋊2D4.7C2 = C24.283C23 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 64 | | C2^3:2D4.7C2 | 128,1195 |
C23⋊2D4.8C2 = C23.367C24 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 64 | | C2^3:2D4.8C2 | 128,1199 |
C23⋊2D4.9C2 = C24.290C23 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 64 | | C2^3:2D4.9C2 | 128,1203 |
C23⋊2D4.10C2 = C24.327C23 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 64 | | C2^3:2D4.10C2 | 128,1286 |
C23⋊2D4.11C2 = C23.457C24 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 64 | | C2^3:2D4.11C2 | 128,1289 |
C23⋊2D4.12C2 = C42⋊22D4 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 64 | | C2^3:2D4.12C2 | 128,1330 |
C23⋊2D4.13C2 = C23.500C24 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 64 | | C2^3:2D4.13C2 | 128,1332 |
C23⋊2D4.14C2 = C23.502C24 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 64 | | C2^3:2D4.14C2 | 128,1334 |
C23⋊2D4.15C2 = C42⋊24D4 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 64 | | C2^3:2D4.15C2 | 128,1335 |
C23⋊2D4.16C2 = C42⋊26D4 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 64 | | C2^3:2D4.16C2 | 128,1342 |
C23⋊2D4.17C2 = C23.530C24 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 64 | | C2^3:2D4.17C2 | 128,1362 |
C23⋊2D4.18C2 = C42⋊30D4 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 64 | | C2^3:2D4.18C2 | 128,1368 |
C23⋊2D4.19C2 = C23.548C24 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 64 | | C2^3:2D4.19C2 | 128,1380 |
C23⋊2D4.20C2 = C42⋊32D4 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 64 | | C2^3:2D4.20C2 | 128,1394 |
C23⋊2D4.21C2 = C23.593C24 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 64 | | C2^3:2D4.21C2 | 128,1425 |
C23⋊2D4.22C2 = C24.403C23 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 64 | | C2^3:2D4.22C2 | 128,1428 |
C23⋊2D4.23C2 = C23.605C24 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 64 | | C2^3:2D4.23C2 | 128,1437 |
C23⋊2D4.24C2 = C23.606C24 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 64 | | C2^3:2D4.24C2 | 128,1438 |
C23⋊2D4.25C2 = C24.412C23 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 64 | | C2^3:2D4.25C2 | 128,1442 |
C23⋊2D4.26C2 = C23.612C24 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 64 | | C2^3:2D4.26C2 | 128,1444 |
C23⋊2D4.27C2 = C23.630C24 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 64 | | C2^3:2D4.27C2 | 128,1462 |
C23⋊2D4.28C2 = C23.649C24 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 64 | | C2^3:2D4.28C2 | 128,1481 |
C23⋊2D4.29C2 = C23.652C24 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 64 | | C2^3:2D4.29C2 | 128,1484 |
C23⋊2D4.30C2 = C24.437C23 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 64 | | C2^3:2D4.30C2 | 128,1485 |
C23⋊2D4.31C2 = C23.656C24 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 64 | | C2^3:2D4.31C2 | 128,1488 |
C23⋊2D4.32C2 = C23.660C24 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 64 | | C2^3:2D4.32C2 | 128,1492 |
C23⋊2D4.33C2 = C23.678C24 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 64 | | C2^3:2D4.33C2 | 128,1510 |
C23⋊2D4.34C2 = C23.697C24 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 64 | | C2^3:2D4.34C2 | 128,1529 |
C23⋊2D4.35C2 = C23.703C24 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 64 | | C2^3:2D4.35C2 | 128,1535 |
C23⋊2D4.36C2 = C23.724C24 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 64 | | C2^3:2D4.36C2 | 128,1556 |
C23⋊2D4.37C2 = C23.726C24 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 64 | | C2^3:2D4.37C2 | 128,1558 |
C23⋊2D4.38C2 = C23.729C24 | φ: C2/C1 → C2 ⊆ Out C23⋊2D4 | 64 | | C2^3:2D4.38C2 | 128,1561 |
C23⋊2D4.39C2 = C42⋊15D4 | φ: trivial image | 64 | | C2^3:2D4.39C2 | 128,1124 |